Structure Reports

Online
ISSN 1600-5368

Gonca Özdemir, ${ }^{\text {a }} *$ Șamil Ișık, ${ }^{a}$ Ciğdem Albayrak ${ }^{b}$ and Erbil Ağar ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Physics, Ondokuz Mayıs University, TR-55139, Samsun, Turkey, and ${ }^{\mathbf{b}}$ Department of Chemistry, Ondokuz Mayıs University, TR-55139, Samsun, Turkey

Correspondence e-mail: gozdemir@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.043$
$w R$ factor $=0.134$
Data-to-parameter ratio $=17.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

(E)-2-Acetyl-4-[(3-chlorophenyl)diazenyl]phenol

The molecule of the title compound, $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{ClN}_{2} \mathrm{O}_{2}$, is essentially planar and displays a trans configuration with respect to the central $\mathrm{N}=\mathrm{N}$ double bond. The dihedral angle between the two aromatic rings is $0.73(16)^{\circ}$. There is a strong intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interaction which stabilizes the molecular structure.

Comment

The extensive application of azo dyes in industry and analytical determinations has attracted attention for decades. Azo dyes incorporating 'push-pull' donor-acceptor aryl rings are of great commercial importance for the dyeing of textiles (Zollinger, 1994).

(I)

The molecular structure of (I) is shown in Fig. 1 with the atom-numbering scheme. Selected bond lengths and angles are listed in Table 1. In the azo group, the $\mathrm{N} 1-\mathrm{C} 1$ and $\mathrm{N} 2-\mathrm{C} 7$ bond lengths indicate significant single-bond character, whereas the $\mathrm{N} 1=\mathrm{N} 2$ bond length is indicative of significant double-bond character.

The molecule is essentially planar, the dihedral angle formed by the aromatic rings being $0.73(16)^{\circ}$. A strong intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{H}$ hydrogen bond (Table 2) stabilizes the molecular structure.

An ORTEP view of the title compound, with the atom-numbering scheme and 50% probability displacement ellipsoids. The dashed line indicates a hydrogen bond

Received 28 November 2005 Accepted 16 December 2005 Online 23 December 2005

Experimental

A mixture of 3-chloroaniline ($1 \mathrm{~g}, 7.8 \mathrm{mmol}$), water $(20 \mathrm{ml})$ and concentrated hydrochloric acid $(1.97 \mathrm{ml}, 23.4 \mathrm{mmol})$ was stirred until a clear solution was obtained. This solution was cooled to 273-278 K and sodium nitrite solution $(0.75 \mathrm{~g}, 7.8 \mathrm{mmol})$ in water was added dropwise while the temperature was maintained below 278 K . The resulting mixture was stirred for 30 min in an ice bath. 2-Hydroxyacetophenone ($1.067 \mathrm{~g}, 7.8 \mathrm{mmol}$) aqueous solution (pH 9) was gradually added to a cooled solution of 3-chlorobenzenediazonium chloride, prepared as described above, and the resulting mixture was stirred at 273-278 K for 60 min in an ice bath. Crystals suitable for Xray analysis were obtained after 1 d by slow evaporation of an ethanol solution (yield 79\%, m.p. 385-387 K).

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{O}_{2}$
$M_{r}=274.70$
Monoclinic, $P 2_{1} / n$
$a=8.4663(15) \AA$
$b=11.236(3) \AA$
$c=13.955(3) \AA$
$\beta=103.914(14)^{\circ}$
$V=1288.6(5) \AA^{3}$
$Z=4$

$$
D_{x}=1.416 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 17972
reflections
$\theta=2.4-27.9^{\circ}$
$\mu=0.30 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, red
$0.40 \times 0.35 \times 0.29 \mathrm{~mm}$

Data collection

Stoe IPDS-2 diffractometer ω scans
Absorption correction: integration
X-RED32 (Stoe \& Cie, 2002)
$T_{\text {min }}=0.887, T_{\text {max }}=0.952$
1780 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.059$
$\theta_{\text {max }}=28.0^{\circ}$
$h=-10 \rightarrow 11$
$k=-14 \rightarrow 14$
21521 measured reflections
$l=-18 \rightarrow 18$
3078 independent reflections

Refinement

Refinement on F^{2}
H-atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.134$
$S=0.97$
3078 reflections
172 parameters
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0783 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.37 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{C} 7-\mathrm{N} 2$	$1.460(2)$	$\mathrm{C} 1-\mathrm{N} 1$	$1.437(2)$
$\mathrm{C} 13-\mathrm{O} 1$	$1.226(2)$	$\mathrm{C} 10-\mathrm{O} 2$	$1.335(2)$
$\mathrm{C} 3-\mathrm{Cl} 1$	$1.736(2)$	$\mathrm{N} 1-\mathrm{N} 2$	$1.233(2)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 11 A \cdots \mathrm{O} 1$	0.82	1.83	$2.547(2)$	146

Figure 2
Packing diagram of (I), viewed approximately along the [110] direction. Intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown as dotted lines.

All H atoms were placed in calculated positions and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA, \mathrm{O}-\mathrm{H}=0.82 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2-1.5 U_{\text {eq }}$ (parent atom).

Data collection: $X-A R E A$ (Stoe \& Cie, 2002); cell refinement: $X-A R E A$; data reduction: $X-R E D 32$ (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS86 (Sheldrick, 1986); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Sheldrick, G. M. (1986). SHELXS86. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Stoe \& Cie (2002). X - $A R E A$ and X-RED32. Stoe \& Cie, Darmstadt, German. Zollinger, H. (1994). Diazo Chemistry I. Weinheim: VCH.

